

Organizers:

Publisher:

Scopus*

Program of the International Conferences on Engineering Advancements, Science and Technology (ICEAST2025)

				•	•	DAY O	NE Tuesda	y 4-11-2	025					·
Hall Name	7:30	8:30	9:30	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	15:00	16:00	16:30 17:00
Auditorium						Keynote ICSBC 1	Keynote ICSBC 2					Diss Panel 1 (ICSETS)	Diss Pan	el 2 (ICASET)
ROOM B (Auditorium)						Reynote 1C3DC 1	Reynote ICSBC 2					WS ICASET	WS	ICMET
S1 (TB3-B2 R5/R6)						ICSET:	S 1.3.1	_				Inv. Sp. ICMET Inv. Sp. ICMET	ICSE	TS 1.1.1
S2 (TB3-B2 R1)		_		ning		ICSETS	S 2.4.1	SET)	E	Ή.			ICSE	TS 2.1.1
S3 (TB3-B2 R2)	Ę	Session	talk	=		ICSET:	S 3.2.1	YS!	CME	SEI			ICSE	TS 3.3.1
S4 (TB3-B2 R3)] 🛱	ese		Оре	×	ICSET:	S 4.4.1	2	ᅙ	(ICS	_		ICSE	TS 4.1.1
S5 (TB3-B2 R4)	era		ning		REAI	ICSET:	S 3.1.1	1 (1 (1 (nch		ICSE	TS 5.1.1
A1 (TB3-A1 R4/5)	Registeration	Opening	<u> </u>	Exhibition	BRI	ICASE	T 1.2.2		ote	म	ΙΠ			
A2 (TB3-A1 R6/7)	e g	en	Oper	bit	_	ICASE	T 2.4.1	Keynote	٥	ynote				
A3 (TB3-A2 R4/5)	ď	ď	0	Ë		ICASE	T 3.2.1	, <u>, , , , , , , , , , , , , , , , , , </u>	Keyno	l À				
A4 (TB3-B1 R3/4)				Û		ICASE	T 4.1.2	Ke	ž	Ke				
M1 (TB3-B3 R3/4)						ICME"	Γ 1.1.1					ICMET 2.1.1	ICM	IET 2.1.2
F1 (TB3-B3 R5/6)						WS ICM	ET (EFA)					ICSELL 2.1.1	ICSI	ELL 1.1.1
C1												ICSBC 1		

	DAY TWO Wednesday 5-11-2025																			
Hall Name	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30		13:00	13:30	14:00	15:00	15:30	16:00	16:30	17:0	19:00 21:00
Auditorium	Inv.Spk. ICSELL		WS	(IOP)					ICSETS	Inv. S	pk ICSETS	Inv.Spk. ICASET	Inv.Spk. ICASET		Inv.Spk. ICASET	Inv.Spk. ICASET	Inv.Spk. ICASET	Inv.Spk. I	CASET	
ROOM B (Auditorium)	WS ICI	MET								WS ICMET		WS I	CSETS		WS I	CSETS	Inv. Sp. ICSETS	Inv. Sp. IC	SETS	
S1 (TB3-B2 R5/R6)	ICSETS :	1.1.2					-	_	WS IC	CSETS (RHC	DDES)	ICSETS	5 1.2.1		ICSET	S 1.2.2	Inv. Sp. ICMET	Inv. Sp. IC	MET	
S2 (TB3-B2 R1)	ICSETS 2	2.2.1			ETS)	ETS)	SE	IET)				ICSETS	5 2.2.2		ICSET	S 2.3.1				
S3 (TB3-B2 R2)	ICSETS 3	3.1.2			SSI	SS	Š	2				ICSETS	3.4.3		ICSET	S 3.2.2				
S4 (TB3-B2 R3)	ICSETS 4	4.1.2			Ξ	Ξ	Ξ	Ĕ				ICSETS	6 4.2.1	_	ICSET	S 4.2.2				et
S5 (TB3-B2 R4)	ICSETS !	5.1.2			1	2	7	2				ICSETS	5 5.2.1	2	ICSET	S 5.3.1				dne
A1 (TB3-A1 R4/5)	ICASET	1.2.1			ote	ote	ote	ote	10	CASET 1.4.1	1			3						Ban
A2 (TB3-A1 R6/7)	ICASET	2.3.1			ű	ŭ	ŭ	Ĕ	I I	CASET 2.1.1	1									œ .
A3 (TB3-A2 R4/5)	ICASET	3.1.1			Ke)	Ke)	Ke)	Ke	I I	CASET 3.3.1	1									
A4 (TB3-B1 R3/4)	ICASET	4.1.1			_	_		_	I I	CASET 4.4.1	1									
M1 (TB3-B3 R3/4)	ICMET 3	3.1.1							ı	CMET 3.1.2	2	ICMET	Г 3.2.1		ICME	T 3.3.1	ICME	T 4.1.2		
F1 (TB3-B3 R5/6)	ICMET 4	4.1.1							ı	CSELL 2.3.1	L	ICSELI	1.2.1		ICSEL	L 2.1.2				
C1		ICSBC 2	2		ICSI	BC 3	ICSE	3C 4			ICS	BC 5			ICS	BC 6				

				DAY T	HREE Thursday 6	-11-2025			•	•	•	•	
Hall Name	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00 14:30
Auditorium	Inv. Sp. ICSETS												
ROOM B (Auditorium)	WS I	CMET	Inv.Spk. ICASET	Inv.Spk. ICASET	WS	ICMET	Inv. Sp. ICSELL	Inv. Sp. ICSELL	S	S)			
S1 (TB3-B2 R5/R6)			ICSETS	5 1.4.1			ICSET	S 3.4.2	(ICSETS)	CSETS)	_		
S2 (TB3-B2 R1)			ICSETS	3.4.1			ICSET	S 4.2.3	S	S	SETS)	CMET)	<u>ک</u>
S3 (TB3-B2 R2)			ICSETS	3.5.1			ICSET	S 3.5.2		=	SE	ME	סַ
S4 (TB3-B2 R3)			ICSETS	4.3.1			ICSET	S 4.3.2	r 3	r 4	2	<u> </u>	μe
S5 (TB3-B2 R4)			ICSETS	3.3.2			ICSET	\$ 4.4.2	ķ	ke	~	3 (cer
A1 (TB3-A1 R4/5)	ICASE	T 1.5.1	WS ICSE	TS (EFA)	ICASE	T 1.3.1	ICASE	T 1.3.2	speaker	speaker	talk		_
A2 (TB3-A1 R6/7)	ICASE	T 2.2.1			ICASE	T 2.5.1	ICASE	T 1.1.2			D	note	ing
A3 (TB3-A2 R4/5)	ICASE	T 1.1.1			ICASE	T 4.5.1	ICASE	T 4.5.2	Keynote	Keynote	Invited	Keyr	Closir
A4 (TB3-B1 R3/4)	ICASE	T 4.3.1			ICASE	T 4.2.1	ICASE	T 4.2.2	2	2	2	×	Ö
M1 (TB3-B3 R3/4)	ICME	T 5.1.1	ICMET	5.1.2	ICME	T 1.3.1	ICME	Г 5.1.3	ey	ey	_		
F1 (TB3-B3 R5/6)			ICSELI	. 1.4.1			ICME.	Г 1.2.1	×	×			
C1			IC	SBC 7		_							

Program of the International Conference on Systems Engineering, Technology, and Sustainable Solutions (ICSETS 2025)

	DAY ONE Tuesday 4-11-2025														
Hall Name	7:30	8:30	9:30	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	15:00	16:00	16:30 1	7:00
Auditorium	_	on		ng								Diss Panel 1 (ICSETS)		-	
ROOM B (Auditorium)		sio	talk	penin											
S1 (TB3-B2 R5/R6)	ati	Sessi	lg të	O	AK	ICSET	ΓS 1.3.1				ن		ICSET	ΓS 1.1.1	
S2 (TB3-B2 R1)	tei	l gu	in	٦	BRE/	ICSET	ΓS 2.4.1				Ĭ		ICSET	TS 2.1.1	
S3 (TB3-B2 R2)	giste	Ξ	per	iti	8	ICSET	ΓS 3.2.1				ľ		ICSET	ΓS 3.3.1	
S4 (TB3-B2 R3)	Re	be	Ö	Exhibition		ICSET	ΓS 4.4.1						ICSET	ΓS 4.1.1	
S5 (TB3-B2 R4)		0		EX		ICSET	ΓS 3.1.1						ICSET	ΓS 5.1.1	

					•		-		DAY TWO W	ednesday 5-11-2	2025					•			
Hall Name	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	15:00	15:30	16:00	16:30	17:0	19:00 21:00
Auditorium			ws	1 (IOP)	S)	S)		•	Inv. Sp. ICSETS	Inv. Sp. ICSETS									
ROOM B (Auditorium)					SET	SET					WS 3	ICSETS		WS 2	ICSETS	Inv. Sp. ICSETS	Inv. Sp. IC	CSETS	+
S1 (TB3-B2 R5/R6)	ICSET	S 1.1.2			<u> </u>	22			WS 5 ICSET	S (RHODES)	ICSET	S 1.2.1	ਲ	ICSET	S 1.2.2		•		ne
S2 (TB3-B2 R1)	ICSET	S 2.2.1			1	2					ICSET	S 2.2.2	<u>ב</u>	ICSET	S 2.3.1				ρc
S3 (TB3-B2 R2)	ICSET	S 3.1.2			ote	ote					ICSET	S 3.4.3		ICSET	S 3.2.2				Ваі
S4 (TB3-B2 R3)	ICSET	S 4.1.2			eyn	eyn					ICSET	S 4.2.1		ICSET	S 4.2.2				
S5 (TB3-B2 R4)	ICSET	S 5.1.2			Ke	×					ICSET	S 5.2.1		ICSET	S 5.3.1				

		•		DAY TH	REE Thursday 6	-11-2025							
Hall Name	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00 14:30
Auditorium	Inv. Sp. ICSETS	S)	S)	·S)		ny							
ROOM B (Auditorium)									Ħ	🗔	SET		ō
S1 (TB3-B2 R5/R6)			ICSET	S 1.4.1			ICSET:	\$ 3.4.2	<u>S</u>	S			cerem
S2 (TB3-B2 R1)			ICSET	S 3.4.1			ICSET:	S 4.2.3	3 (4	<u>×</u>		er
S3 (TB3-B2 R2)			ICSET	S 3.5.1			ICSET:	S 3.5.2	(i)	e 7	tal		
S4 (TB3-B2 R3)			ICSET	S 4.3.1			ICSET:	S 4.3.2	ğ	וסנ	eq		ii
S5 (TB3-B2 R4)			ICSET	S 3.3.2			ICSET:	S 4.4.2	e Ai	eyı	, vit		Closing
A1 (TB3-A1 R4/5)			WS 4 ICS	SETS (EFA)					X	ke	<u>r</u>		S

Statistics

Conference	No of papers received	No of accepted papers	No. sessions	Key note speakers	Invited speakers	Workshops	Discussion panel
International Conference on Systems Engineering, Technology, and Sustainable Solutions (ICSETS 2025)	270	137	35	4	13	5	1

Keynote/Invited Speakers

Name:

Prof. Carolyn McGregor AM

Affiliation:

Professor and Dean, Faculty of Business and IT, Ontario Tech University, Ontario, Canada

Country: Canada

Title:

Integrating AI, Big Data, Haptics and Serious Games for Skill and Judgement Training together with Resilience Assessment and Development

Time: 9.30 - 10.00 Date: TUE 4-11

Venue: Auditorium

Abstract:

Training for military personnel, tactical officers and firefighters prior to deployment is important and has traditionally focused on skill and judgement training aspects. Real world training in these contexts is resource intensive, costly and in many cases, does not allow for repeatable training contexts. Virtual training reduces resource intensity & cost, but do not engage all senses leading to maladaptive behaviour that can impact the translation of training to action for deployment. Haptic garments offer great potential to increase the extent of sensory immersion beyond traditional visual and audio immersion to reduce maladaptive behaviour from mismatched training however their efficacy has not been assessed. Beyond skills development, resilience is important for personnel in these professions during deployments. Individualised measurement of physiological response for the assessment and development of resilience predeployment supports short and long term health and wellness. In this presentation new approaches to predeployment skill and judgement training will be presented that integrate a haptic garment with 'serious games' to train predeployment. This environment is enriched with physiological monitoring and artificial intelligence to create personalized assessment and development of resilience. The application of these new approaches for military training will be presented.

Name:

Prof. Ahmed Eltawil

Affiliation:

Associate Dean for Research
Communication and Computing Systems Lab
King Abdullah University of Science and
Technology (KAUST), KSA

Country: SAUDI ARABIA

Title:

Machine Learning and Artificial Intelligence a Key Driver for Future Generation Wireless Networks

Time: 10.00 - 10.30 Date: WED 5-11

Venue: Auditorium

Abstract:

Artificial Intelligence (AI) and Machine Learning (ML) are no longer simply tools for optimizing wireless networks—they are becoming the defining fabric of future-generation wireless systems. As we look toward 6G and beyond, the fusion of AI and wireless technologies is transforming networks into intelligent, adaptive, and self-evolving platforms. From predictive beam management and Alnative physical-layer design to fully integrated sensing and communication, we are witnessing the rise of networks that can perceive, reason, and act in real time. In this keynote, I present a vision for Al-native wireless networks where intelligence is not an add-on but a foundational design principle. The talk explores how breakthroughs in explainable and causal AI will build trustworthy, transparent, and robust decision-making into every layer of the wireless stack, and investigate how generative and foundation models will accelerate innovation across spectrum management, resource allocation, and device connectivity. Finally, I will highlight the collaborative efforts at KAUST's Communications and Computing Systems Laboratory (CCSL) and with our global academic and industry partners to realize the vision of moving from today's Al-assisted systems to truly Al-native networks capable of enabling immersive applications, pervasive Internet-of-Everything connectivity, and sustainable digital infrastructure.

This keynote will outline the opportunities, technical challenges, and research frontiers that will define the next decade of wireless innovation, and will invite the community to help shape the AI-driven wireless ecosystem of the future.

Name:

Prof. Michael Bradley

Affiliation:

The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich, UK

Country: United Kingdom

Title:

The "National Strategy for an Orderly Transition to Net Zero":

Addressing Substantial Technical Challenges Inherent in Oman's Industrial

Economy

Time: 12.00 - 12.30 Date: THU 6-11

Venue: Auditorium

Abstract:

Oman has committed to high level action on moving to net zero by 2050, "conditional upon technical solutions", with visions for 2030 and 2040 along the way. Given that 50% of the country's GDP and 75% of government revenue flow from the oil and gas sector, and that public finances are already under pressure, this puts a very strong focus on realising the 'technical solutions' required to decarbonise many current operations and to avoid carbon growth in other sectors where economic diversification is a priority.

This keynote speech will examine some of the key technical challenges that need to be addressed, the lessons that may be learned from progress made in other economies, and the areas where more focus is required to bring possible solutions to economic feasibility. In particular, fossil derivatives, basic materials, and waste processing will be identified and examined with a view to exploring routes forward.

Name:

Prof. Andrzej Ordys

Affiliation:

Professor, Institute of Automatic Control and Robotics at Warsaw University of Technology, Faculty of Mechatronics

Country: POLAND

Title:

On Integrated Approach into Detection of Cyberattacks in Industrial Control Systems

Time: 12.30 - 13.00 Date: THU 6-11

Venue: Auditorium

Abstract:

The driving forces of the fourth industrial revolution (Industry 4.0) are new digital technologies such as: Cyber-Physical Systems (C-PS), Industrial Internet of Things (IIoT), Internet of Services (IoS) and Cloud Computing. These new technologies have a very strong impact on the functioning of industry, economy and on many other areas of human activities. However, an unintended effect is the emergence of new threats related to the possibility of unauthorized interference in the functioning of cyber-physical systems - caused by cybernetic attacks.

In detecting cyberattacks, methods related to the information technologies (IT) have already reached a very high level of advancement. Much less publicized are solutions derived from systemic approaches developed in the automation environment, which include intrusion detection based on control loop monitoring and process data analysis. This presentation is concerned with the latter. i.e. the cyberattacks which manage to bypass the IT firewalls and manage to infiltrate the industrial control systems, causing faulty behaviour of the industrial installation. Faults in industrial installations could be related to various reasons, such as human errors, equipment damage, and intentional (cyber) attacks. They are particularly dangerous for critical infrastructures, such as power plants, water supply systems, power grids, chemical industry, etc. Despite various reasons, the effects of serious damage and attacks may be the same. Some results will be presented, demonstrating how the cyberattacks could be detected using industrial control monitoring systems. One of the main messages of this presentation is the need and desirability of developing an integrated approach to the task of ensuring the safety of industrial control systems (ICS), i.e. resilience to faults and to cyberattacks.

Name:

Dr. Zakiya Al-Azri

Affiliation:

New Technology Advisor PDO Oman

Country: OMAN

Title:

Hydrogen at the Frontline: Resilience or Revenue

Time: 10.30 - 11.00 Date: WED 5-11

Venue: Auditorium

Abstract:

Hydrogen has rapidly evolved from pilot-scale demonstrations to a central pillar of global decarbonization strategies, positioning itself at the frontline of the energy transition. Yet a critical question remains: is Hydrogen primarily a tool to strengthen energy resilience or a new revenue engine for emerging economies? This keynote will explore Hydrogen's dual role through the lens of Oman, a country charting one of the world's most ambitious Hydrogen strategies.

Oman has set a target of producing 1 Mtpa of green Hydrogen by 2030–2033, with plans to scale up to 8.5 Mtpa by 2050, underpinned by projected cumulative investments of more than US\$140 billion. On the resilience front, Oman seeks to leverage its abundant renewable resources, established gas and port infrastructure, and strategic geographic position to reduce dependence on hydrocarbons and safeguard the competitiveness of its industrial base. In parallel, the country is pursuing an export-oriented pathway, positioning itself as a leading supplier of Hydrogen and its derivatives in the form of liquid Hydrogen and ammonia, supported by multi-billion-dollar partnerships with international investors. This presentation explores how Oman is addressing the inherent tradeoffs and potential synergies between these objectives: the development of common infrastructure and free zones to mitigate investment risks; the alignment of regulatory frameworks with export market growth; and the reinvestment of export revenues into long-term energy security. Oman's approach illustrates that Hydrogen's role need not be an either/or choice when integrated effectively where resilience drives competitiveness while revenue sustains resilience. Lessons drawn from Oman's trajectory provide valuable insights for other emerging Hydrogen producers seeking to balance security and profitability at scale.

Name:

Prof. Khalid Elgazzar

Affiliation:

Canada Research Chair, The founder and director of the IoT Research Lab, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, CANADA

Country: CANADA

Title:

Robust Pedestrian Intent Prediction in Challenging Environments for Autonomous Vehicles

Time: 16.30 - 17.00 Date: WED 5-11

Venue: Rostaq hall

Abstract:

Enhancing vehicle perception models is essential for the successful integration of assisted and autonomous driving technologies. This talk will introduce an innovative framework aimed at improving the accuracy and robustness of pedestrian intent prediction, particularly under adverse weather conditions. Utilizing an image enhancement pipeline and a transformer-based network with self-attention mechanisms, the framework addresses key challenges in real-time performance and domain adaptation. Evaluated using the JAAD dataset, the proposed model demonstrates state-of-the-art results with significantly low inference times.

Name:

Dr. Julien Le Kernec

Affiliation:

Senior Lecturer, Autonomous Systems & Connectivity Group, IEEE Distinguished Lecturer, University of Glasgow

Country: United Kingdom

Title:

Radar sensing in assisted living: an overview

Time: 10.00 - 10.30 Date: THU 6-11

Venue: Auditorium

Abstract:

In this keynote, I will discuss the place of radar for assisted living. First, the context of assisted living and the urgency to address the problem will be described. The second part will give an overview of existing sensing modalities for assisted living and explain why radar is an upcoming preferred modality to address this issue. The third section presents developments in machine learning that help improve performances in classification, especially with deep learning with a reflection on lessons learned from it. Finally, I'll conclude with open challenges and future developments.

Name:

Prof. Ahmed Al Maashri

Affiliation:

Chair of IEEE Oman Section, Head of Electrical and Computer Engineering, Sultan Qaboos University, Oman

Country: Oman

Title:

A Sustainable Oman for the Next Generation: The Role of Academia in Teaching Tomorrow

Time: 8.00 - 8.30 Date: THU 6-11

Venue: Auditorium

Abstract:

The volatility of the world mandates sustainability more than ever. Fluctuations in oil prices, disruptive technologies, and regional conflicts all pose challenges that future engineers need to address. This talk presents some of these challenges and the role that universities need to play in preparing students for future challenges. The talk presents both national and global perspectives, along with practical tactics that can be applied in teaching and learning.

Name:

Prof. Ahmed H. Madian

Affiliation:

Chair of IEEE Egypt section, Program Director of Electronics and Computer Engineering (ECE), Nile University, EGYPT

Country: EGYPT

Title:

Bio-impedance Modeling of plants

Time: 10.30 - 11.00 Date: THU 6-11

Venue: Auditorium

Abstract:

Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance.

Bio-impedance measurements are used in the diagnosis of plants behavior to certain conditions such as fruit maturity, fruit ripening, analyzing the effect of heating and freezing conditions on fruits, measuring of root growth, and determining the water content and characteristic analysis of the root zone. Also, it is used to provide information about environmental change effect on fruits. There are other contributions in using bio-impedance measurements for different applications such as blood glucose measurement, monitoring insulin availability for personalized diabetes therapy, Characterizing red blood cell micro-circulatory parameters, and tactile sensing bio-hybrid soft E-skin in soft robotics.

This talk demonstrates the different bio-impedance plant electrical models, measurement methodology and optimization technique suitable for solutions. Extract the best circuit parameters circuit for the model that fit the experimental results via different optimization techniques from mathematical point of view to choose the best performance versus the complexity of the used algorithms.

Name:

Dr. Najam Ul Hasan

Affiliation:

Associate Dean for Research College of Business, Technology & Engineering, Sheffield Hallam University, Sheffield, UK

Country: United Kingdom

Title:

From Devices to Decisions: The Future is Distributed with AI at the Edge, Fog,

and Cloud for Smarter IoT Systems
0 - 16.30 Date: WED 5-11

Time: 16.00 - 16.30 Da
Venue: Rostaq hall

generation of cyber-physical environments.

Abstract:

IoT is everywhere now. Billions of devices are connecting our homes, cities, and industries to the digital world. The real magic doesn't lie in just collecting data from these devices, but in using that data to make smart decisions. Dr. Najam's talk will explore how AI and computing is transforming the raw data into meaningful action. Drawing on real-world examples from healthcare, environmental monitoring, and disaster response, the talk will highlight why edge, fog, and cloud computing matter in unlocking the full potential of AI and computation. It also addresses the key challenges and considerations of sharing decision making among edge devices, fog nodes, and the cloud. The attendees will gain insights into the technical trade-offs and design principles of distributed computing architecture that can lead to smarter, secure, scalable, energy-efficient, and robust systems. They will also discover how growing impact of hybrid architecture is reshaping industries and paving the way for the next

Name:

Dr. Korhan Cengiz

Affiliation:

World Top 2% Scientist / Associate Editor, IEEE Transactions on Intelligent Transportation Systems / Associate Editor, IEEE IoT Journal / Associate Professor, Biruni University,

Country: Turkey

Title:

Novel Protocols for Wireless Sensor Networks

Time: 9.30 - 10.00 Date: THU 6-11

Venue: Auditorium

Abstract:

The reduction of energy consumption has become a key research area for the information and communication technology (ICT) industry, due to economical, environmental, and marketing reasons. While the environmental direction aims at minimization of greenhouse gas emissions by enforcing the usage of renewable energy in the ICT industry, economical and marketing directions lead researchers to design low-power components or develop and enhance energy-saving protocols without an impact on the level of the performance. With the steady increase in the cost of energy, the expanding number of energy-hungry components and widespread usage of ICT industry, most of the protocols that have become an integral part of our lives but are yet developed without any energy constraints in mind in the past will need to be restructured or developed again. For this reason, researchers are studying on all layers of the Internet protocol stack to develop energy-efficient protocols and algorithms. This keynote lecture reviews recent approaches for energy efficiency studies for each layer in the Internet protocol stack from the physical layer to the application layer and also especially for WSNs. It is expected that with the deployment of current research output, the studies performed at each layer will result in significant energy savings for the ICT industry which in turn will have a positive impact on our lives for their economical and environmental results.

Name:

Prof. Sherin Youssef

Affiliation:

The head of computer College of Engineering - Arab Academy for Science, Technology and Maritime Transport,

Country: Egypt

Title:

Harnessing Artificial Intelligence for Accelerating Sustainable Green Projects:

Towards a Sustainable Future

Time: 12.30 - 13.00 Date: WED 5-11

Venue: Auditorium

Abstract:

Al-infused solutions are making strides in the field of sustainability. As the world grapples with a triple planetary crisis of climate change, biodiversity loss, and pollution, the need for scalable sustainable technologies has never been greater. Artificial intelligence (AI) is uniquely positioned to tackle complex challenges in all fields of agriculture robotics, the 4th industry Revolution, healthcare, climate mitigation, adaptation, and resilience. The talk will highlight a deep understanding of a wide array of generative and agentic AI applications spanning sectors such as energy, waste management, health, transportation, and agriculture. Delves into how the new AI wave is accelerating progress towards sustainable development goals (SDGs). The talk will demonstrate various incredible applied projects and case-studies that have potential impact on Arab counties.

By analyzing vast datasets and automating tasks, will show how AI can optimize resource management, enhance energy efficiency, improve agricultural practices, and support various other initiatives aimed at creating a more sustainable future. It further investigates the potential AI ramifications concerning societal and environmental dimensions with ethical consideration.

Name:

Prof. Seyed Mojtaba Sadrameli

Affiliation:

Professor of Process Engineering, German University of Technology in Oman, Gutech

Country: OMAN

Title:

Phase Change Materials for Sustainable Energy Systems: Innovation, Integration, and Impacts

Time: 12.00 - 12.30 Date: WED 5-11

Venue: Auditorium

Abstract:

Phase Change Materials (PCMs) are substances that can store and release substantial amounts of energy at a constant temperature during phase transitions. Over the past 50 years, various types of PCMs, including paraffin waxes, hydrated salts, fatty acids, and polymers, have been widely utilized for energy storage and thermal management applications. They are broadly classified into three groups: organics, inorganics, and eutectics. Organic materials can be divided to paraffin waxes which are open chained saturated alkanes, and non-paraffin compounds such as fatty acids, vegetable oils and polyethylene glycol (PEG). Inorganic PCMs include salt hydrates and metallics. Eutectics which are a mixture of two organics, two inorganics or organic inorganic has a sharp phase change temperature, melt, and freeze congruently without segregation and found to have attractive properties especially in air conditioning applications. Phase change materials have been utilized in all aspects of engineering, such as chemical, mechanical, material, civil, biomedical, industrial and electrical engineering. The applications of phase change materials (PCMs) have expanded to include thermal management in solar panels, vehicles, building materials, lithium-ion batteries, electrical appliances, electronics, textiles, and biomedical devices. Previous studies in this field demonstrate that the use of PCMs can lead to significant energy savings and enhanced thermal energy control. This presentation will cover and discuss results from case studies conducted over the past 20 years on the integration of phase change materials (PCMs) for thermal management in various areas, including solar cells, vehicles and temperature regulated textiles for comfort temperature attainment.

Name:

Prof. Mahmoud A. Abdalla

Affiliation:

World Top 2% Scientist, Professor in Electronic and Electrical Engineering Department, MTC, Cairo, Egypt

Country: EGYPT

Title:

WEARABLE ANTENNAS FOR ON BODY APPLICATIONS: MODERN DESIGN
AND APPLICATIONS

Time: 11.00 -11.30 Date: THU 6-11

Venue: Auditorium

Abstract:

Wearable microwave components and specially antennas have gained a lot of interest in the recent years due to the increasing demands of the biomedical applications. Wearable Antennas must have certain features and properties to be considered suitable for being wearable on the human body (wrist, chest, back, thigh, and abdomen, etc). The requirement of the wearable antenna can be summarized as Flexibility, Mechanical stability, Testing close to human body, Compact size and low profile, User convenience and comfortable for user, Ease of fabrication and integration with other components, Low costs, Robustness and resistance of results in various settings. In addition to the previous characteristics, the antennas should have high gain, low Specific Absorption Rate (SAR), and a unidirectional radiation pattern.

The applications include health care, tracking, entertainment security, life care, Caring for Deprived Children and Elderly, sports and physical training, military and space applications. Different materials have been proposed for designing the wearable antennas, Examples are: (1) Rogers Ultralam 3850 substrate, which is based on the flexible Liquid Crystal Polymer (LCP) and (2) textile substrates and finally graphene. Through the talk, we will present different wearable antennas with different function parameters and different possible applications

Name:

Prof. Ayman El-Tager

Affiliation:

Founding Chair of the IEEE MTT-S Egypt Chapter,
Chair of the Scientific Council, Electronic Eng. Dept.,
RF Active circuits and systems group founder and Director,
MTC, Cairo, Egypt.

Country: EGYPT

Title:

ADVANCED MICROWAVE CIRCUITS FOR GREEN COMMUNICATIONS AND SUSTAINABILITY

Time: 11.30 - 12.00 Date: THU 6-11

Venue: Auditorium

Abstract:

Green communications means sustainable, energy-efficient, energy-aware, and environmentally aware communications and networking. Many challenges will be discussed to apply some advanced microwave circuits and systems for sustainable development and green communications. Starting from energy harvesting techniques, an Outdoor RF spectral study available from cell-phone towers in sub-urban areas for ambient RF energy harvesting is investigated. Based on this measured data, a designer can decide the maximum distance away from a cell-phone tower that meets certain detection sensitivity. Consequently, two prototype designs of dual band radio frequency energy harvester (RF-EH) rectifier circuits are introduced to harvest RF energy from four different local RF ambient sources simultaneously. Both of the demonstrated prototype rectifier circuits are successfully tested in lab environment and shows improved results at low levels of incident RF power. Accordingly, energy sustainable IOT and RFID could be developed. In addition, an improved self-interference canceller for X-band transceivers are introduced which is applicable for radars of autonomous vehicles. Finally, an optimized technique is introduced for maximizing the RF power amplifier efficiency without compromising other performance parameters such as linearity and output power, helping network operators to have environmentally friendly infrastructure.

Name:

Prof. Abdullah Hamed Al-Badi

Affiliation:

World Top 2% Scientist, Professor in Electrical & Computer Engineering Department at Sultan Qaboos University,

Country: OMAN

Title:

High Penetration of Renewable Energy Sources into the Grid: Challenges and Solutions

Time: 8.30 - 9.00 Date: THU 6-11

Venue: Auditorium

Abstract:

In power system networks, there is a growing trend to integrate more Renewable Energy Sources (RESs) to address environmental concerns associated with traditional power plants. While this increased incorporation of RESs is beneficial for promoting clean energy, it also poses significant challenges to power system stability—particularly with respect to frequency stability.

The use of power electronic interfaces (such as converters and inverters) in RESs results in a lack of system inertia. As the penetration of RESs increases, system inertia further decreases, negatively impacting the grid's damping characteristics and dynamic performance.

Oman is actively pursuing renewable energy for electricity generation as part of its strategy to reduce carbon emissions and dependence on fossil fuels. The national goal is to generate 30% of electricity from renewable sources by 2030 and achieve net-zero emissions by 2050.

Therefore, while the transition to RESs is essential for sustainability, it introduces new challenges in maintaining frequency stability in the power system. In this talk, I will present possible methods to address and overcome these challenges.

Name:

Dr. Ertan Ermiş

Affiliation:

Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, istanbul, Turkey

Country: Turkey

Title:

Next-Gen Technologies Shaping the Future of Food Engineering: From Smart Systems to Smart Solutions

Time: 9.00 - 9.30 Date: THU 6-11

Venue: Auditorium

Abstract:

The Food Engineering discipline is undergoing a transformative evolution driven by breakthroughs in computational technologies, artificial intelligence, and digital technologies. This keynote will explore the convergence of computational and simulation technologies, artificial intelligence (AI), quantum computing, and machine learning in revolutionizing food processing, quality control, and supply chain management. With real-world examples, how AI-powered models and digital twins optimize food formulation, predict shelf-life, and enable real-time process monitoring are addressed. The growing importance of blockchain computational science in ensuring traceability and transparency across global food systems will also be addressed. By bridging emerging technologies with future-focused food systems strategies, this keynote sets the stage for an integrated approach to transforming food processing applications not only for today's challenges but also for tomorrow's horizons.

Name:

Prof. Mohamed Elkhatib

Affiliation:

Professor, Senior Lecture, IEEE Senior member, MTC, Oman

Country: OMAN

Title:

60 Years of Fuzzy Logic: Advances from Theory to Intelligent Applications

Time: 13.00 - 13.30 Date: THU 6-11

Venue: Auditorium

Abstract:

The talk traces six decades of progress in fuzzy logic, highlighting breakthroughs that have transformed theoretical foundations into practical, intelligent applications across automation, AI, and smart systems.

Five decades of fuzzy logic oriented activities have revealed that fuzzy logic based systems have the potential for applications in various areas, leading to industrial investment in developing fuzzy logic based products. Until recently, fuzzy logic based systems have been implemented mostly as software modules working on conventional, personal computers and workstation type of computing platforms. However, when applying fuzzy logic techniques for real-time complex applications, there is a need for more effective and high speed approaches was felt. This has given designers an opportunity to look into fuzzy logic implementation using hardware. The theory of fuzzy logic systems is inspired by the remarkable human capability to operate on and reason with perceptionbased information. Fuzzy logic provides a formal methodology for representing and implementing the human expert's heuristic knowledge and perceptionbased actions. Using the fuzzy logic framework, the attributes of human reasoning and decision making can be formulated by a set of simple and intuitive IF (antecedent)—THEN (consequent) rules, coupled with easily understandable and natural linguistic representations.

Throughout this presentation we will show some of our successful fuzzy projects during the last decade. These projects cover different applications and fields, from VLSI implementation of fuzzy system, UAVs design and implementation, Vehicle self-navigation, Laser Tracking to wireless sensor network and its applications.

Discussion Panel

ICEAST Discussion Panel

Title: IEEE Women in Engineering (WIE):

Empowering the Future: Al and Innovation in Education

Time: 15.00 - 16.00 Date: TUE 4-11

Venue: Auditorium

Name: Prof. Carolyn McGregor AM

Affiliation: Professor and Dean, Faculty of Business and IT, Ontario

Tech University, Ontario, Canada

Country: Canada

Name: Prof. Sherin Youssef

Affiliation: The Chair of IEEE "Women In Engineering" Egypt Section, The head of computer College of Engineering - Arab Academy for

Science, Technology and Maritime Transport, Egypt

Country: Egypt

Name: Dr. Maryam Ahmed Yousif Al Nofli

Affiliation: The Chair of IEEE "Women In Engineering" Oman Section, University of Technology and Applied Sciences, UTAS.Shinas. Oman

Country: Oman

Name: Dr. Afra Salim Mohamed Al Ruzagi

Affiliation: WIE Panel Coordinator

IC-EAST 2025 Publication/Proceedings Co-Chair

Systems Engineering Department, Military Technological College -

Ministry of Defence

Country: Oman

Abstract:

Artificial Intelligence (AI) is transforming how we teach, learn, and imagine the future of education. This panel brings together leading voices from academia, research, and industry to explore how innovation and AI are reshaping educational systems, expanding access, and empowering learners globally—especially women and underrepresented groups.

Through a dynamic conversation, panelists will share their personal journeys in technology and education, discuss the real impact of AI-driven tools on learning outcomes, and examine the opportunities and ethical challenges that come with integrating AI into classrooms and institutions. The discussion will also look ahead to the future of education in the AI era—reimagining how we design learning spaces, develop curricula, and foster inclusion and creativity.

Concluding with an interactive Q&A, the session aims to inspire and empower the next generation of women innovators, educators, and engineers to take an active role in shaping an equitable and intelligent educational future.

Technical Workshops

Technical Workshop WS1 (IOP)

Name:

Anete Ashton

Affiliation:

SENIOR PUBLISHER, CONFERENCE SERIES IOP Publishing

Country: United Kingdom

Title:

Succeeding in Publishing through a challenging Landscape

Time: 9.00 : 10.00 Date: Wednesday 5-11-2025

Venue: Auditorium

Abstract:

Scientific publishing faces a range of challenges that impact the dissemination and integrity of research. One major issue is the pressure to publish frequently, which can lead to compromised research quality and the proliferation of questionable studies. Peer review, while essential, is often slow and inconsistent, with reviewers facing time constraints and limited incentives. Additionally, access to published research remains a barrier, as many journals operate behind paywalls, limiting the reach of scientific knowledge—especially in low-resource settings. The rise of predatory journals further complicates the landscape, exploiting open-access models without proper editorial standards. Finally, navigating ethical concerns such as data transparency, reproducibility, and conflicts of interest continues to be a critical concern for maintaining trust in scientific literature.

To maintain high standards in academic publishing, the scientific community must prioritize transparency, rigor, and accountability throughout the research and publication process.

In this workshop we will discuss issues researchers and Publishers deal with in order to enforce strict ethical policies to uphold integrity —covering authorship criteria, conflict of interest disclosures, and research misconduct.

(A certificate will be awarded to participants)

Technical Workshop WS2

Name:

Dr. Muhammad Rizwan Mughal

Affiliation:

Associate Professor, Department Electrical and Computer Engineering, Sultan Qaboos University

Country: (IEEE Oman section) Oman

Title:

Hands of Space Mission Design

Time: 15.00 : 1600 Date: Wednesday 5-11-2025

Venue: Auditorium

Abstract:

The Hands-on Space Mission Design workshop introduces participants to the fundamentals of space systems and satellites, with a focus on systems engineering principles essential for mission success. Through interactive sessions, participants will gain practical knowledge of orbital mechanics, mission planning, subsystem design, and ground operations. The workshop offers a unique opportunity to prototype small satellites and apply systems thinking by pitching and designing a complete mission concept. Open to participants with a basic background in electronics and programming, the session is designed to provide both theoretical insights and hands-on experience in space mission design.

Technical Workshop WS3

Name:

Prof. Hussein A Kazem

Affiliation:

Renewable & Sustainable Energy Technologies- UNESCO regional center for quality and excellence in education Sohar University, Oman

(IEEE Oman section) Oman Country:

Title:

ADVANCED PHOTOVOLTAIC (PV) SYSTEMS

Date: Wednesday 5-11-2025 Time: 13.00:14.00

Venue: Auditorium

Abstract:

This talk provides a thorough examination of the current state and future prospects of solar photovoltaic (PV) technologies. It explores the evolving market dynamics, industry opportunities, and technological advancements in these fields. The discussion highlights the critical role of both policy and technological investments in shaping the future competitiveness and market potential of solar PV systems.

	Technical W	orkshop WS4	
Name:			
	George Menexis		
Affiliation:			EFA GROUP
	CEO of SCYTALYS, EFA GR	OUP	
Country:	Oman		
Title:			
The Importa	ance of Cyber Security in M	lilitary Joint All Doma	in Operations and
	Critical Infr	rastructures	
Time: 9.00: 1	.0.00	Date: Thursday 6-13	1-2025
Venue: A1 (Ti	33-A1 R4/5)		

Abstract:

Recent conflicts have demonstrated that tactical superiority is no longer determined solely by firepower or manpower, but by the seamless interoperability of forces across all operational domains—land, sea, air, space, and cyber. Battles are increasingly won by nations that can achieve unified command and control across multi-domain environments, enabling real-time situational awareness and coordinated decision-making.

Scytalys has long been at the forefront of this evolution, delivering advanced interoperability solutions through tactical data links and integrated multi-domain command-and-control systems. However, as connectivity increases, so does exposure. In fully interconnected operational architectures, cyber resilience becomes the decisive factor, as a single vulnerable node can compromise an entire mission structure.

To safeguard joint all-domain operations, cyber security must be embedded not as an auxiliary layer but as a foundational design principle. This includes the ability to simulate and stress-test digital twins of operational systems within cyber-realistic environments, enabling military organizations to validate resilience against evolving threats. Training across blue, purple, and red teams under realistic adversarial conditions further ensures readiness against statesponsored and asymmetric attacks.

The future of defense dominance will depend not only on achieving interoperability—but on securing it.

Technical Workshop WS5

Name:

Damiano Simeone

Affiliation:

Director of Operations and Regional Sales Manager, RHODES

Country: Oman

Title:

Countering Emerging Threats: Anti-Drone Solutions for Security and Defense

Time: 12.00 : 13.00 Date: Wednesday 5-11-2025

Venue: S1 (TB3-B2 R5/R6)

Abstract:

The rapid proliferation of commercial and military UAVs has made drones a persistent security threat. Since the outbreak of the Ukraine–Russia war, drone related incidents have surged, with hundreds of hostile flights recorded over the past two years. Recent high-profile incursions over Denmark and Germany are a constant reminder that the risk extends to civilian and commercial domains worldwide. This talk examines the core challenges of anti-drone operations: detection in cluttered environments, reliable identification, and safe neutralization.

Technical Sessions

Main Track	Engineering and Emerging Tech	nologies in S	Smart Systems
Sub- Track	Smart Applications, Embedded	Systems, an	d Automation technologies
Session No. ICSETS 1.1.1 Venue			S1 (TB3-B2 R5/R6)
Time:	16:00 - 17:00	Date:	November 04, 2025
Paper ID	Paper title		Authors
1. 256	Artificial Intelligence-Based Cap	oacitance	1. Zohreh Rafiei Samani
	Estimation for Piezoelectric Act	uators	2. Morteza Mohammadzaheri
			3. Mojtaba Ghodsi
			4. Wenyan Wu
			5. Nasser Sherkat
			6. Houman Alipooramirabad
2. 86	Artificial Intelligence Driven An	alysis of	1. karthikeyan Subramanian
	Intrusion-Detection Systems Us	sing	2. Faizal Hajamohideen
	XGBoost		3. Viswan Vimbi
			4. Noushath Shaffi
			5. Shimaz Khan Shaik
3. 93	A Deepfake Detection System for	or Law	1. Abdulaziz Al-Hasani1
	Enforcement Applications Using	g Xception	2. Wasin Alkishri
			3. Mahmood Al-Bahri
4. 143	Quantum-Inspired Hierarchical	Temporal	1. Najiba Said Hamed Al-
	Transformer with Explainability	for IoT	Zadjali
	Attack Detection		2. Sundaravadivazhagan
			Balasubaramanian

Main Track	Innovative Electronics, Comm	d Mechatronics Systems					
Sub- Track	Sensors, Semiconductor Technology, Networking, 5G, and Emerging						
	Communication Technologies						
Session No.	ICSETS 2.1.1	Venue:	S2 (TB3-B2 R1)				
Time:	16:00 - 17:00	Date:	November 04, 2025				
Paper ID	Paper title		Authors				
1. 40	Basic OCDM Switching (BOS)	Architecture	1. Inam Bari				
	for Terabit Packet Switches		2. Tariq Hussain				
			3. Muhammad Asif				
			4. Syed Zubair				
			5. Shahzad Hassan				
			6. Salman Saadat				
2. 187	Comparative Study of Differen	nt V2V	1. Nada A. Abdelsalam				
	Channel Modeling Strategies		2. Saly Hassaneen				
			3. Heba Nashaat				
			4. Sherif M. Abuelenin				
3. 264	Performance Evaluation of Qu	uality of	1. Hothefa Jassim				
	Service (QoS) in VANET Enviro	nment	2. Zeyad Sharef				
			3. Baraa T Sharef				
			4. Rabé Anderson				
4. 268	Integrating HAPs and Edge Co	mputing for	1. Kayode Popoola				
	Ubiquitous 6G Connectivity		2. Srilatha Pamuri				
			Narayanagari				
			3. Muheeb Ahmad				

Main Track	Sustainable Engineering and E	nergy Solutio	ons
Sub- Track	Renewable Energy, Decarboni	zation, Emiss	ions Reduction, and Net Zero
Session No.	ICSETS 3.2.1	Venue:	S3 (TB3-B2 R2)
Time:	11:30 - 12:30	Date:	November 04, 2025
Paper ID	Paper title		Authors
1. 65	Extracting Ammonia from Wa	stewater	1. Marcin Khzouz
	Potential Treatment and Reco	very	2. Gurvinder Pal Dubb
	Methodologies		3. Babak Fakhim
			4. Evangelos Gkanas
			5. Farooq Sher
2. 72	Meteorological Forecasting in	n Oman: A	1. Nasser Ahmed Al Azri
	Comparative Analysis of Artifi	icial Neural	2. Mohammadu Bello
	Networks, Support Vector Ma	ichines,	Danbatta
	Random Forest and Extreme (Gradient	3. Saleh Al Saadi
	Boosting Using Long-Term His	torical Data	
	(1984-2024)		
3. 75	Low-Cost, Smart EV Chargers	for Green	1. Khaled Farouk
	Transportation		2. Mohamed Elkhatib
			3. Eyad Badawi
			4. Ahmed Abouzied
			5. Youssef roushdy
			6. Abdallah Hussein
4. 76	Environment and process-spe	cific multi-	1. Swaprabha P Patel
	objective optimization analysi	is of an	2. Ashish M Gujarathi
	industrial carbon capture plar	nt towards	
	the decarbonization goal		

Main Track	Advancing Digital Transformation and Modern Simulation							
Sub- Track	Computational and Simulation	Computational and Simulation Technologies, Artificial intelligent						
	mathematics, and Quantum C	omputing						
Session No.	ICSETS 4.1.1	Venue:	S4 (TB3-B2 R3)					
Time:	16:00 – 17:00	Date:	November 04, 2025					
Paper ID	Paper title		Authors					
1. 6	Optimizing Parameter Selection	on for	1. Salma Zakzouk					
	Forecasting and Classifying W	ater Quality	2. Mohamed Medhat					
			3. Lobna Said					
			4. Ahmed Soltan					
2. 74	A Surrogate Modelling Frame	work for	1. Hisham Al Hadidi					
	Predicting the Effective Behav	iour of	2. Ibrahim Abuzayed					
	Composite Materials		3. Chao Zhang					
			4. Jose L Curiel Sosa					
3. 81	Lean Quality Tools and Inform	ation	1. Fatma El Zahraa Mohamed					
	Digitalization for Clinical Stud	ies	Mekkawy					
	Performance		2. Noha Hany El Amary					
			3. Ahmed Mohammed Hossain					
			4. Samir Yousef Marzouk					
4. 155	Acoustic Noise in ICUs: A CRQ	A-Based	1. Branislav Vuksanovic					
	Analysis		2. Ahmed Elkalsh					
			3. Mohamed Al-Mosawi					
			4. Yousuf Al Kharusi					

Main Track	Biomedical Innovations and Advanced Technologies		
Sub- Track	Biomedical Engineering and Health Science Applications		
Session No.	ICSETS 5.1.1	Venue:	S5 (TB3-B2 R4)
Time:	16:00 – 17:00	Date:	November 04, 2025
Paper ID	Paper title		Authors
1. 10	Advancements in Deep Transf	er Learning	1. ABDUL BASITH
	for Glaucoma Detection: Enhancing Early		2. SULTHAN IBRAHIM
	Diagnosis and Overcoming Challenges		
2. 38	AI-Powered Medical Image Diagnosis		1. Mariam Mohammed Al
	System for Oral Cancer Detection		Shauibi
			2. Raneem Rasheed Al
			Dhabuuni
			3. Suresh Manic Kesavan
3. 107	On Connection Number-Based	d Topological	1. Uma R
	Indices and QSPR Analysis of A	Anti-	2. Kavitha N
	Glaucoma Drugs using Machir	ne learning	3. Naresh Kumar H
4. 178	Vision Models for Medical Ima	aging: A	1. Md Mahmudul Hoque
	Hybrid Approach for PCOS De	tection from	2. Md Mehedi Hassain
	Ultrasound Scans		3. Muntakimur Rahman
			4. Md. Towhidul Islam
			5. Shaista Rani
			6. Md Sharif Mollah

Main Track	Engineering and Emerging Technologies in Smart Systems			
Sub- Track	Unmanned and Autonomous Vehicles, HVACR Technologies, and Printing			
	Technology			
Session No.	ICSETS 1.3.1	Venue:	S1 (TB3-B2 R5/R6)	
Time:	11:30 - 12:30	Date:	November 04, 2025	
Paper ID	Paper title		Authors	
1. 80	AI-Enabled Security Framewo	rk for	1. Ibrahim Bassiony	
	VANETs: Detecting Position Fa	Isification	2. Sherif Hussein	
	Attacks		3. Gouda I. Salama	
2. 140	Wireless Charging of Electric Trains		1. Adnan Al Balushi	
	(WCET): Reducing Infrastructure Costs		2. Saleh Babaa	
	and Environmental Impact		3. Afra Al Ruzaiqi	
			4. Asiya Najeeb	
3. 108	A review of energy recovery r	nethods	1. Morteza Khashehchi	
	from water transmission lines	from water transmission lines using		
	Microturbines			
4. 159	Design of a Switched Reluctar	nce Linear	1. El Manaa Barhoumi	
	Motor for Microelectromecha	nical		
	Systems (MEMS)			

Main Track	Innovative Electronics, Communications and Mechatronics Systems			
Sub- Track	Signal Processing, Space Technologies, and Exploration Systems			
Session No.	ICSETS 2.4.1	Venue:	S2 (TB3-B2 R1)	
Time:	11:30 - 12:30	Date:	November 04, 2025	
Paper ID	Paper title		Authors	
1. 9	Baseline Estimation and Corre	ction in	1. Tariq Hussain	
	Mixed-Polarity Charge Signals		2. Tong Deng	
			3. Inam Bari	
			4. John Pillai	
			5. Branislav Vuksanovic	
2. 136	MILP-Driven Network Plannin	g	1. Ishmal Sohail	
	Framework for Energy Efficien	cy and	2. Faizan Hamayat	
	Coverage Maximization in IoT Mesh		3. Attiq Zeeshan	
	Networks		4. M. Umar Khan	
			5. Syed Zubair	
			6. Rana Fayyaz Ahmad	
3. 263	Optimizing Small Satellite Con	stellations	1. Abdullah Ali Al Manei	
	for Communication, Earth Obs	servation,	2. Hilal Al Busaidi	
	and IoT Applications: A Region	nal Focus on	3. Muhammad Mughal	
	the GCC and Adjacent Seas		4. Mohammed M Bait	
			Suwailam	
4. 94	Lightweight Cryptography for	Medical	1. Tanisha S	
	Image privacy on Resource co	nstraint	2. Vaigundamoorthy M	
	hardware		3. Manikandan S P	
			4. Poovannan E	
			5. Vijayakumar M	
			6. Vinoth Raj R	

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Smart Grids, Power Electronics, Energy Storage, and Battery Technology			
Session No.	ICSETS 3.3.1 Venue: S3 (TB3-B2 R2)			
Time:	16:00 - 17:00	Date:	November 04, 2025	
Paper ID	Paper title		Authors	
1. 96	Sustainable hydrogen generat	ion from	1. Joseph Sekhar Santhappan	
	biopower of sewage sludge ar	nd solar		
	energy in Oman: A techno-eco	onomic	2. Maria Rajesh Antony	
	study		3. Arun S Gopinath	
2. 100	Electric-Load Forecasting Usin	g Time	1. Rami Alhmouz	
	Series Models: Comparative S	tudies	2. Majdi Mansouri	
			3. Abdullah Hamed Al Badi	
			4. Ahmed Awad	
3. 101	Advancing Energy Savings by	the	 Saleh Elkelani Babaa 	
	Integration of LED Panel Light	s and	2. Asiya Najeeb	
	Presence Detectors into Build	ings	3. Afra Al Ruzaiqi	
			4. Abdullah AL Shibli	
			5. Marcin Khzouz	
			6. Ibrahim Al Ashrafi	
4. 103	Impact of Filler Size and Load	ing on the	1. Mahmoud Mokhtar Alsafy	
	Mechanical Performance of M	licro and		
	Nano Bio-Composites		2. Nasr Al Hinai	
			3. Khalid Alzebdeh	

Main Track	Advancing Digital Transformation and Modern Simulation			
Sub- Track	Digital Transformation in Education, such as Engineering Education,			
	Competencies for Future Graduates, Adaptation to the Future Job Market,			
	Virtual Reality (VR), Soft Labs,	and Advance	d Simulation Environments	
Session No.	ICSETS 4.4.1	Venue:	S4 (TB3-B2 R3)	
Time:	11:30 - 12:30	Date:	November 04, 2025	
Paper ID	Paper title		Authors	
1. 64	Personalized Learning AI for H	igher	1. Sami Dhahi Bilaish	
	education Institutions in Oma	n	AlMashifari	
			2. Gnana Rajesh	
			3. Abdullah Saleem Sulaiman	
			Al-Aasmi	
			4. Ali Hassan Saleh Al Shaibani	
			5. Gnana Rajesh D	
2. 180	Al-Driven Multimedia Education	onal	1. Israa AlWahaibi	
	Interventions for Substance A	buse	2. Said Sultan Saif AlSharji	
	Awareness Among Youth in O	man:	3. Vinu Sherimon	
	Integrating Game-Based and C	Community		
	Approaches			
3. 85	Leveraging Graph RAG Model	for	1. UMAR SATHIC ALI	
	Academic Transcript Analysis:	Α		
	Comprehensive Study			
4. 92	Artificial Intelligence as a Cata	lyst for	1. Hussain AL Rashdi	
	Sustainable and High-Quality	Education: A	2. Mohamed Alsiyabi	
	Systematic and Bibliometric R	eview		
	(2015–2025)			

Main Track	Sustainable Engineering and Energy Solutions		
Sub- Track	Industry 4.0		
Session No.	ICSETS 3.1.1	Venue:	S5 (TB3-B2 R4)
Time:	11:30 - 12:30	Date:	November 04, 2025
Paper ID	Paper title		Authors
1. 50	Realistic Chaotic-Harmonic W	ave	 Omer Sulaiman Al Shabibi
	Modeling and Performance O	ptimization	
	of OWC		
2. 51	Enhancing Gas Separation Per	formance of	1. Jimoh K. Adewole
	PVDF Membranes via Glycero	I	2. Faruq B. Owoyale
	Modification for Efficient CH ₄ ,	/N ₂	3. Habeebllah B. Oladipo
	Separation		4. Abdullah M. O. Albalushi
			5. Abdul Latif Ahmed
3. 66	Small-Scale Green Hydrogen F	Production	1. Gnana Rajesh
	and Utilization for Home-Base	ed Energy	Saleh Abdullah Albalushi
	Systems		
			3. Manar Abdullah Saleh Al
			Shiyadi
			4. Shadha Rashid Obaid
			Jamil Almanii
4. 73	Boost Converter with Switch	Adaptive	 Saleh Elkelani Babaa
	Control to Improve Solar Pow	er System	2. Matthew Armstrong
	Performance and Efficiency		

Main Track	Engineering and Emerging Technologies in Smart Systems			
Sub- Track	Smart Applications, Embedded Systems, and Automation technologies			
Session No.	ICSETS 1.1.2	Venue:	S1 (TB3-B2 R5/R6)	
Time:	08:00 - 09:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 206	Enhancing Anomaly Detection	ı in	1. Alper Alan	
	Autonomous Systems with Ex	plainable AI	2. Mustafa Kutlu	
			3. Ruba Saik	
			4. Mishri Almarshoud	
2. 234	A Hybrid CNN-LSTM and Fuzzy Inference		1. Sree Matangi K	
	System for Real-Time Cognitive		2. Divyadarshini B	
	Distraction in Drivers		3. Neelam Sanjeev Kumar	
3. 36	Integrated Real-Time Monitoring of		1. Mohammad Maroof	
	Three-Phase Induction Motors	s	Siddiqui	
			2. Ali Salim Al Hadhri	
			3. Abdulaziz Salim Al Kathiri	
			4. Aseel Ahmed Al Najjar	
4. 41	Comparative Analysis of YOLO-based		1. Eliganti Ramalakshmi	
	Models for Pothole Detection		2. T Prathima	
			3. Mohd Aquib	
			4. Mohammed Faisal Hussain	

Main Track	Innovative Electronics, Communications and Mechatronics Systems			
Sub- Track	RF and Microwave Circuits, VLSI Circuits, and Systems			
Session No.	ICSETS 2.2.1	Venue:	S2 (TB3-B2 R1)	
Time:	08:00 - 09:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 47	Milli-meter wave Antenna Ar	ray for 5G	1. Gunasekaran Thangavel	
	Smart City Applications		2. Thuriaya Habib Al Battashi	
			3. Syed Rafeek Ahmed	
2. 62	Reconfigurable COTS for Mult	imedia Data	1. Arivarasan V M	
	Privacy		2. Aashiq Banu	
			3. Sivaraman R	
3. 48	From Chaos to Cryptography:	Α	1. Naveen Srimal	
	Memristive True Random Number		2. Kishore S	
	Generator with NIST-Compliant Output		3. Aashiq Banu	
			4. Muthaiah R	
			5. Sivaraman R	
4. 61	Chaos-Enhanced Dual-Source	TRNG	1. Harish B	
	Architecture for FPGA-Based Hardware		2. Prashant Kumar	
	Security		3. Aashiq Banu	
			4. Muthaiah R	
			5. Muralidharan D	
			6. Ananth Hari R	

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Industry 4.0			
Session No.	ICSETS 3.1.2	Venue:	S3 (TB3-B2 R2)	
Time:	08:00 - 09:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 150	Hybrid Leachate Treatment w	ith Date Pit	1. Shabib Sulaiman AlRashdi	
	Tannins and Persulfate AOP: A Statistical Approach		2. Hala Mohamed AL Zaabi	
2. 164	Non invasive method of detecting		1. Faisal Mohamed	
	Induction machine faults from stator		2. Afra Al Ruzaiqi	
	current			
3. 184	Evaluation of Glycerol-Impregnated		1. Asma Said Al Kharusi	
	Polymeric Membranes for		2. Abdul Latif Ahmed	
	Propane/Propylene Separation	n via	3. Jimoh Kayode Adewole	
	Solution-Diffusion			
4. 195	Real-Time Digital Twin-Driven Multi-		1. Marwa Hassan	
	Objective Optimization of Du	al-Winding	2. Noha El-Amary	
	Permanent Magnet Synchron	ous Motors	3. Pow-Seng Yap	
	(DWPMSG)		4. Zhonghao Chen	

Main Track	Advancing Digital Transformation and Modern Simulation			
Sub- Track	Computational and Simulation Technologies, Artificial intelligent			
	mathematics, and Quantum Computing			
Session No.	ICSETS 4.1.2	Venue:	S4 (TB3-B2 R3)	
Time:	08:00 - 09:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 201	EFFICIENT QUANTUM TEXT TF	RANSFER	1. Basma Al Kharusi	
	USING TELEPORTATION AND	ENTROPY-	2. Hafiz Muhammad Asif	
	BASED COMPRESSION			
2. 228	A neural network-based archi	tecture for	1. Samat Mukhanov	
	classifying and semantically a	ssessing	2. Zhansaya Abubakirova	
	commercial documents		3. Miras Gaziz	
			4. Saule Amanzholova	
			5. Azhar Kuttybek	
			6. Kymbat Seilkhanova	
3. 251	A Finite Element-based Data-	Driven	1. Payam Soltani	
	Fault Diagnosis Approach for	Structures	2. Injamamul Haque	
	using Al		3. Morteza Mohammadzaheri	
			4. Mojtaba Ghodsi	
4. 253	CUSTOMER SEGMENTATION I	JSING	1. Chathurya Reddy	
	MACHINE LEARNING AND HIS	TORICAL	Kamireddy	
	DATA		2. Sundareswaran N	
			3. Vijay M	
			4. Vinoth Raj R	

Main Track	Biomedical Innovations and Advanced Technologies				
Sub- Track	Biomedical Engineering and Health Science Applications				
Session No.	ICSETS 5.1.2	Venue:	S5 (TB3-B2 R4)		
Time:	08:00 - 09:00	Date:	November 05, 2025		
Paper ID	Paper title		Authors		
1. 223	Fractional-Order Epidemiolog	ical	1. Fahad Al Saadi		
	Modeling and Explainable Al	for	2. Akif Akgul		
	Predicting Zika Virus Outbrea	ks			
2. 257	CARDIOGNOSE: AI-DRIVEN PL	.ATFORM	1. Asala Ahmed Sulaiman Al		
	FOR ECG-BASED ARRHYTHMIA	4	Amri		
	DIAGNOSIS		2. Smitha Sunil Kumaran Nair		
			3. Mohamed Al Rawahi		
3. 13	Classification of Epileptic Seiz	ures Using	1. Farwa Suman		
	AI: A Comparative Study on EEG Data		2. Zeashan Khan		
			3. Ali Raza		
			4. Hafiz Zia Ur Rehman		
			5. Muhammad Tallal Saeed		
5. 224	Enhanced Brain Tumor Classif	ication with	1- Alphonsa J		
	Improved African Vultures Op	timization	6. Sheeja Kumari V		
			7. Wilfred Blessing N.R		
			8. Aicha Said Abdullah Al Zidi		
			6. Mohammed Taufiq Hail Al		
			Madhagy		

Main Track	Engineering and Emerging Technologies in Smart Systems			
Sub- Track	Control Systems, Robotics, Autonomous Systems, and Vehicles			
Session No.	ICSETS 1.2.1	Venue:	S1 (TB3-B2 R5/R6)	
Time:	13:00 - 14:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 79	Metaheuristic Optimization-B	ased Model	1. Mayada Hussein Annan	
	Predictive Control for Nonline	ar CSTR	2. Mohammed Abozied	
	Systems		Hassan	
			3. Mahmoud Mohammed	
			Ashry	
2. 104	Optimized Proportional Integr	al	1. Mohammed Ahmed	
	Derivative Control of Power S	ystem using	2. Salihu Abdul Alhaji	
	the Particle Swarm Algorithm		3. Babul Salam Kader Ibrahim	
			4. M.U.Ilyas	
3. 111	Adaptive Model Predictive Co	ntrol for	1. Mayada Hussein Annan	
	Precise Trajectory Tracking in	Chemical	2. Mohammed Abozied	
	Reactors		Hassan	
			3. Mahmoud Mohammed	
			Ashry	
4. 217	Design and Simulation of a 6-	Degree of	1. Abdulaziz Hamad Al Hasani	
	Freedom (DoF) Robotic Arm fo	or		
	Hazardous Pick-and-Place App	olications	2. Haashitha madanayaka	

Main Track	Innovative Electronics, Communications and Mechatronics Systems			
Sub- Track	RF and Microwave Circuits, VLSI Circuits, and Systems			
Session No.	ICSETS 2.2.2	Venue:	S2 (TB3-B2 R1)	
Time:	13:00 - 14:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 214	Conceptual Design of a Low-Power Data		1. Faisal Mohamed	
	Acquisition System for Monito	oring Animal	2. Fahad Al Saadi	
	Movement			
2. 68	A Novel SWIPT-Based Architecture for		1. P. Keerthana	
	Efficient RF Energy Harvesting in Wireless		2. M Sangeetha	
	Sensor Networks		3. C. Selvakumar	
3. 200	Numerical Simulations and Performance		1. Abrar Al Maskri	
	Analysis of Integrated Planar Meshed		2. Abdullah Al Manei	
	Antennas with Solar Cells for 3U CubeSats		3. Muhammad Mughal	
			4. Hafiz Asif	

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Circular Economy, Sustainable Energy, and Green Engineering			
Session No.		enue:	S3 (TB3-B2 R2)	
Time:	13:00 - 14:00 D	ate:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 174	Multi-Objective Energy Manager	ment of	1. Ateeq Ur Rehman	
	Renewable Energy Communities	and	2. Sandra Corasaniti	
	Smart Grids		3. Zahid Wadud	
			4. Ghulam Hafeez	
			5. Safeer Ullah	
2. 176	Thermal and Mechanical Behavio	our of	1. Said Abdullah Al Mufaraaji	
	Neat and Silica-Reinforced Polyp	ropylene		
	Under Varying Cooling Rates		2. Farooq Khalfan Al Jahwari	
			3. Tasneem Parvez	
			4. Moosa Salim Al Kharusi	
3. 189	Erosion prediction for 90° elbow	s in series	1. Mim Kabir	
	using machine learning algorithr	ns	2. Afzal Hussain	
			3. Tasneem Parvez	
			4. Nabeel Al Rawahi	
4. 191	Performance Evaluation of Temp	oral	1. AliHumaid Al Hinaai	
	Interpolation Methods for Hourl	у	2. Nasser Ahmed Al Azri	
	Temperature Gaps in an Arid Clir	mate	3. Saleh Nasser Al Saadi	

Main Track	Advancing Digital Transformation and Modern Simulation			
Sub- Track	Machine Learning, Blockchain computational science			
Session No.	ICSETS 4.2.1	Venue:	S4 (TB3-B2 R3)	
Time:	13:00 - 14:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 99	SO-SMOTE: A Hybrid Samplin	g	1. Gillala Rekha	
	Framework Combining Snake	Optimizer	2. J Vrajraj	
	and SMOTE for Imbalanced Cl	assification		
2. 128	A Machine Learning Influence	d	1. Sandeep Das Yadav P	
	Cryptographic Framework for	Fast and	2. Deepesh Sai R	
	Efficient Encryption		3. Sai Sreeja P	
			4. Veenasri Murugesan	
			5. Nithya Chidambaram	
3. 145	Board Activity and Bank Perfo	rmance: An	1. Sumbul Sajjad	
	Australian Financial Sector Ev	idence Using	2. Maria Estella Varua	
	Machine Learning-Based Imp	utation.		
4. 67	Blockchain and IoT in the Priv	асу	1. Muhammad Kashif	
	Landscape: A Paradigm Shift f	or Privacy	2. Sohail Sarwar	
	Protection		3. Muhammad Safyan	
			4. Nadeem Yaqub	

Main Track	Biomedical Innovations and Advanced Technologies			
Sub- Track	Laser, Photonics, and Advanced Ordnance Technologies			
Session No.	ICSETS 5.2.1	Venue:	S5 (TB3-B2 R4)	
Time:	13:00 - 14:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 30	Multimodal AI Framework for	Diagnosing	1. Neven Saleh	
	Coronary Artery Disease: A Fu	ision of	2. Ahmed M. Salaheldin	
	Analyzing Clinical Data with E	CG Signal		
2. 37	The Extraction of Sleep Stages	Using EEG	1. Mohammad Maroof	
	Signals from different channe	l	Siddiqui	
			2. Ali Salim Al Hadhri	
			3. Prajoona Valsalan	
			4. Mohd. Suhaib Kidwai	
3. 216	Comparative Study of Intellige	ent Dynamic	1. M.A. Fkirin	
	Response of Prosthetic Hand	Controllers	2. Ola S Sultan	
			3. Noha H El Amary	
4. 262	Comparative Analysis of Bipe	d Models for	1. Sarra Abbasher	
	Predicting Human Motion Usi	ng Discrete	2. Amur Al Yahmedi	
	Lagrange Mechanics		3. Riadh Zaier	

Main Track	Engineering and Emerging Technologies in Smart Systems			
Sub- Track	Control Systems, Robotics, Autonomous Systems, and Vehicles			
Session No.	ICSETS 1.2.2	Venue:	S1 (TB3-B2 R5/R6)
Time:	15:00 - 16:00	Date:	Nov	ember 05, 2025
Paper ID	Paper title			Authors
1. 219	The Ethical, Social and Legal C	hallenges in	1.	Rabé Anderson
	Developing Robotic Exoskelet	ons: a	2.	Ziyad Abdulwahab
	Review Article			Abdullah
2. 233	Toward Reliable and Function	al FDM:	1.	Al Azhar Al Amri
	Mapping Performance Barrier	s and	2.	Mark Goudswaard
	Technological Enablers		3.	Aydin Nassehi
3. 270	Control of a single-link flexible		1.	Nura Tahir
	manipulator: Integration of ou	utput-based	2.	Adamu Yawale Babawuro
	filter with model predictive co	ontrol	3.	Abdullahi Bala Kunya
			4.	Bashir Bala Muhammad
			5.	Saifullahi Sadi Shitu
			6.	Ismail Umar
4. 255	Design and Validation of a Sm	art Waste	1.	Emmanuel Prince Oreke
	Management System Integrat	ing Internet	2.	Rihab Al Seyab
	of Things (IoT) and Artificial Ir	itelligence		
	(AI)			

Main Track	Innovative Electronics, Communications and Mechatronics Systems			
Sub- Track	Remote Sensing, Image Processing, and Photonics			
Session No.	ICSETS 2.3.1 Venue: S2 (TB3-B2 R1)			
Time:	15:00 - 16:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 149	Impact of Apodization Profile	s on the	1. Samayaraj Murali Kishanlal	
	Spectral Efficiency of FBG-Bas	ed WDM		
	Systems for Next Generation	Networks		
2. 173	Water Quality Monitoring Usi	ng the	1. Mohammed Salim Al	
	Google Earth Engine and Spec	tral Indices	Nadabi	
	in Wadi Dayqah Dam		2. Mohammed Kandil El-	
			Diasty	
			3. Talal Etri	
			4. Mohammad Reza Nikoo	
3. 179	Al-Assisted Intervention Prog	ram for	1. Balqees Ali Al Hajri	
	Enhancing Social and Commu	nication	2. Marwa Bader Al Ofi	
	Skills in Autism Spectrum Disc	order	3. Maryam Ahmed Al Abri	
			4. Malak Mahmood Al Harrasi	
			5. Aseel Younis Aulad Thani	
4. 211	A Motion-Based Framework f	or Patellar	1. Ananth Hari Ramakrishnan	
	Tendon Segmentation in Ultra	sound		
	Video Sequences		2. Saru Meena Ramu	
			3. Nachiappan Chockalingam	
			4. Panagiotis E Chatzistergos	

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Renewable Energy, Decarbonization, Emissions Reduction, and Net Zero			
Session No.	ICSETS 3.2.2	Venue:	S3 (TB3-B2 R2)	
Time:	15:00 - 16:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 77	Rotating Packed Bed a Transfo	rmative	1. Mohammadu Bello	
	Technology for Sustainability	n Society	Danbatta	
	5.0		2. Nasser Ahmed Al Azri	
			3. Muhammad Abdul Qyyum	
			4. Nabeel Al Rawahi	
2. 78	Reliability Assessment and Enhancement		 Abdul Saleem Shaik 	
	of Heavily Loaded Distribution Feeders		2. Shamsa Al Balushi	
	Using DG Integration		3. Hamdan Al-hendasi	
			4. Khlood Al-Hudifi	
			5. Rajja Khalifa Al Braiki	
3. 88	A Sustainable Building Approa	nch:	1. Shahid Ali Khan	
	Enhancing IAQ and Energy Per	formance	2. Saleh Elkelani Babaa	
	Through HVAC Optimization a	nd	3. Morteza Khashehchi	
	Condensate Water Reclamation	on	4. Jorge A Caeiro	
4. 91	Exploring Efficiency Effects of	the Lorenz	1. AbdulAziz Al Ghafri	
	System for Photovoltaic Panel	Modeling	2. Mustafa Kutlu	

Main Track	Advancing Digital Transformation and Modern Simulation			
Sub- Track	Machine Learning, Blockchain computational science			
Session No.	ICSETS 4.2.2	Venue:	S4 (TB3-B2 R3)	
Time:	15:00 - 16:00	Date:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 236	A Comparative Study on the T	ransition	1. Shree Smeka J	
	from Neural Networks to Eruc	dition	2. Sheeja Kumari V	
	Automata		3. Santhoshkumar S. P.	
			4. Dr. Wilfred Blessing N.R	
2. 267	A Novel Lightweight Deep Lea	rning	1. Sherin Youssef	
	Pipeline for Classification of Ir	nvasive	2. Doaa Shoieb	
	Species using Aerial Imagery S	Supporting		
	Global Biodiversity and Ecolog	gical		
	Stability			
3. 207	High Precision Underwater Ol	oject	1. Arun Kumar Sivarama	
	Recognition Using AI Driven S	onar	2. Rajiv Vincent	
	Imaging and Ensemble Learni	ng	3. Arun Rajesh Sivarama	
			4. Girija Narasimhan	
			5. Thirumurugan Shanmuga	
			6. Kamalavelu Velayutham	
4. 208	Deep Learning-Based Classific	ation of	1. Roshima Biju	
	Covid-19 from Chest CT Scans	: A	2. Warish Patel	
	Comparative Study of CNN A	rchitectures	3. Suresh Manic Kesavan	

Main Track	Biomedical Innovations and Advanced Technologies			
Sub- Track	Nanoscale Technologies for Medical Devices, Diagnostics, and Wearable Health Technologies			
Session No.	ICSETS 5.3.1	enue:	S5 (TB3-B2 R4)	
Time:	15:00 - 16:00 D	ate:	November 05, 2025	
Paper ID	Paper title		Authors	
1. 11	Non-Invasive Dietary Monitoring	g of Liquid	1. Moiz Wali Khan	
	and Solid Intake in Elderly Patier	nts using	2. Maida Nadeem	
	Throat EMG		3. Hafiz Zia Ur Rehman	
			4. Zia Mohy-Ud-Din	
			5. Zeashan Khan	
2. 220	Development of High-Density		1. Mohammed Suleiman Al	
	Polyethylene /Hydroxyapatite M	licro-	Owiemri	
	Composites via Twin-Screw Extra	usion for	2. Mamoud Mokthar Alsafy	
	Additive Manufacturing Applicat	ions	3. Moosa Salim Al Kharusi	
			4. Farooq Khalfan Al Jahwari	
3. 231	Detection of Eye-Movement and	Blink	1. Swaadi R	
	Patterns using EOG Signals		2. Shafrithaj Fathima M	
			3. Jayapriya J	
			4. Sumathi R	
			5. Raajan N R	
			6. Annashree Nivethitha S	
4. 232	Neurogrip: IMU Sensor – Contro	lled	1. Harsshadha Balamurugesh	
	Bionic Arm for Assistive Technologic		Š	
			2. Akash S S	
			3. Sumathi R	
			4. Annashree Nivethitha	
			5. Raghunathan N	
			6. Narasimhan Renga Raajan	

Main Track	Engineering and Emerging Technologies in Smart Systems				
Sub- Track	Advanced Manufacturing				
Session No.	ICSETS 1.4.1	Venue:	S1 (TB3-B2 R5/R6)		
Time:	09:00 -10:00	Date:	November 06, 2025		
Paper ID	Paper title		Authors		
1. 157	A review on CFD Analysis of Material Flow in Friction Stir Welding		1. Joseph Michel		
2. 213	Smart PPE Vest: IoT-Enabled S	System with	1. Rahaf Khamis AlZarei		
	LoRa for Real-Time Hazard De	tection in	2. Al Hasnaa Ali Al Fazari		
	Worksites		3. Zainab Mufti Al Qurashi		
			4. Ahlam Abdullah Al Harooni		
3. 245	Investigation of Defects Gene	ration on	1. Khaled Ahmeda		
	Self-Heating of GaN HEMTs		2. Brendan Ubochi		
			3. Brahim benbakthi		
			4. Maria Elksne		
			5. Walid Abushiba		
			6. Mustafa Alqaysi		
			7. Dr Edward Wasige		
			8. Prof. Karol Kalna,		
4. 266	Explainable Artificial Intellige	nce for	1. Muhammad Farrukh		
	Composite Laminate Design:	SHAP-Based	Shahab		
	Insights on Buckling Performa	nce	2. Mustafa Kutlu		
			3. Muneer Ahmed Musthaq		
			Ahamed		

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Circular Economy, Sustainable Energy, and Green Engineering			
Session No.	ICSETS 3.4.1	Venue:	S2 (TB3-B2 R1)	
Time:	09:00 -10:00	Date:	November 06, 2025	
Paper ID	Paper title		Authors	
1. 129	Smart Carbon Capture System	1	1. Sara Al Zakwani	
2. 131	Sustainable Thermoelectric W	ater Cooler:	1. Shahid Ali Khan	
	Energy-Efficient and Decarbor	nisation	2. Mohammed Abdul Qadar	
	Solution for Oman Vision 204	0	Bashuaib	
			3. Inam Bari	
			4. Oliver Bautista Santos	
3. 132	Time Series Energy Demand F	orecast	Abdulsamad Shehu	
	Using Artificial Neural Netwo	k (ANN)	2. Ahmad Amir Bature	
	Model in Kano State, Nigeria.		3. Aminu Jibrin Aliyu	
4. 135	Integrated Optimization of Fla	re Gas for	1. Nawaz Ahmad	
	Hydrogen Production, Power	Generation,	2. Afzal Hussain	
	and Emission Control		3. Ashish M Gujarathi	
			4. Sulaiman Al Obaidani	
			5. Tasneem Peervez	
			6. ImranKhan	

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Nanotechnology for Sustainability and Environmental Engineering			
Session No.	ICSETS 3.5.1	Venue:	S3 (TB3-B2 R2)	
Time:	09:00 -10:00	Date:	November 06, 2025	
Paper ID	Paper title		Authors	
1. 192	Sustainable Water Conservati	on in Hot	1. Shahid Ali Khan	
	and Humid Climates: Efficient	Harvesting	2. Muhammad Farrukh	
	and Reuse of HVAC Condensa	te	3. Shahab John Regan Pillai	
			4. Asim Murtaza	
2. 218	A focused review of PV Power	r forecasting	1. Fadhil Khadoum Alhousni	
	methods and critical influenci	ng factors	2. Humaid Abdullah Alhinai	
			3. Jorge caeiro jasnau caeiro	
			4. Marwan Ahmed B. Farhan	
3. 235	TOWARD SUSTAINABLE ROOF	TOP SOLAR	1. Youssef Kassem	
	IN IRAQ: COMPARATIVE ASSES	SSMENT OF	2. Hüseyin Gökçekuş	
	FIXED AND DUAL-AXIS SOLAR	SYSTEMS	3. Abdalla Hamada	
			Abdelnaby	
4. 247	Hybrid composites reinforced	with flax	1. Muneer Ahmed Musthaq	
	and glass on epoxy matrix: ex	perimental	Ahamed	
	and numerical comparison of	tensile	2. John Regan Pillai	
	properties for load bearing ap	plications	3. HomNath Dhakal	
			4. Muhammad Farrukh	
			Shahab	
			5. Payam Soltani	
			6. Said Khalfan Said Al Siyabi	

Main Track	Advancing Digital Transformation and Modern Simulation			
Sub- Track	Cybersecurity computational and mathematics, Data Privacy analysis			
Session No.	ICSETS 4.3.1	Venue:	S4 (TB3-B2 R3)	
Time:	09:00 -10:00	Date:	November 06, 2025	
Paper ID	Paper title		Authors	
1. 117	Securing Medical Images on Id	oT Devices	1. Nandhitha S	
	using High Speed Scrambling	and Pixel	2. Dhivya Ravichandran	
	Adaptive Diffusion		3. Amirtharajan Rengarajan	
2. 120	Lightweight Cryptographic Ap	proach:	1. Angelo Vivian Ronald	
	Pixel-Wise Adaptive Diffusion	and Spatial	2. Gurucharan J	
	Block Permutation for Securin	g Satellite	3. Amirtharajan Rengarajan	
	Images		4. Dhivya Ravichandran	
3. 125	DNA Governed Coupled Chao	s Based RGB	Tehjo Nithya Shree M	
	Image Encryption		2. Birundha R	
			3. Saranya T S	
			4. Veenasri Murugesan	
			5. Nithya Chidambaram	
4. 161	A Lightweight and Secure Ima	ge	1. Sivaranjani Devi C	
	Encryption Algorithm Based o	n Multi-	2. SriVarshini G	
	Stage Chaotic Shuffling and Di	iffusion	3. Vandhana A	
			4. Jayasakthi S	
			5. Padmapriya Velupillai	
			Meikandan	

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Smart Grids, Power Electronics, Energy Storage, and Battery Technology			
Session No.	ICSETS 3.3.2 Venue:		S5 (TB3-B2 R4)	
Time:	09:00 -10:00	09:00 -10:00 Date:		
Paper ID	Paper title	Paper title		
1. 106	Optimization of Solar/Wind h	ybrid	1. Maryam Ahmed Yousif Al	
	System to meet Hydrogen fue	el and	Nofli	
	Electric charge needs of Vehic	les at	2. Joseph Shekhar Santhappar	
	Community Level in Oman			
2. 269	Frequency Response Assessm	Frequency Response Assessment in an		
	Isolated Power Network: Mus	sandam Case	2. Seham Hamood Al Ghawi	
	Study		3. Alanood Humaid AlSharji	
			4. Md Shadman Abid	
			5. Razzaqul Ahshan	
3. 110	Removal of Pharmaceutical W	laste from	1. Fatma Abdullah Al Shihhi	
	Local Hospitals' Wastewater L	Jsing Multi-	2. Shahad Adnan Al Zarafi	
	wall Carbon Nanotubes (MW	CNTs)	3. Shahla Ramis Al Waha	
			4. Yaqeen Khalifa Al Kalbani	
4. 126	Modeling and Real-Time Anal	ysis of	1. Arthur Nicholas	
	Leakages in WDN Using Pipe I	Flow Expert	2. Sulaiman Al Shaili	
	and LORA Technology		3. Mohammed Al Balushi	
			4. Amur Salim Amur Al Balush	
			5. Khalfan Abdullah Khalfan A	
			Riyamy	

Main Track	Sustainable Engineering and Energy Solutions			
Sub- Track	Circular Economy, Sustainable Energy, and Green Engineering			
Session No.	ICSETS 3.4.2 Venue:		S1 (TB3-B2 R5/R6)	
Time:	11:00 -12:00 Date:		November 06, 2025	
Paper ID	Paper title		Authors	
1. 139	Probabilistic Decision Support System for		1. Kanishkar Karuppusa	
	Rainfall Prediction Using Baye	sian	2. Gowri Lakshmanan	
	Networks and Monte Carlo Simulation			
2. 152	Maximum Power Point Tracking in PV		Khaled Mostafa Sedik	
	Systems and Partial Shading: A Review		2. Marial Ahmed Sameh	
			3. Mahmoud Abdulla Attia	
			4. Almoataz Youssef Abdelaziz	
3. 154	Experimental analysis on tem	perature	1. Stephen Leon J	
	effects in photovoltaic solar p	anel	2. Geetha B	
	performance in Oman			
4. 160	Designing Sustainable Bambo	0-	1. Prithvi Anandhan	
	Composite Bicycle Frames: A	Mechanical		
	Engineering Approach			

Main Track	Advancing Digital Transformation and Modern Simulation			
Sub- Track	Machine Learning, Blockchain computational science			
Session No.	ICSETS 4.2.3 Venue:		S2 (TB3-B2 R1)	
Time:	11:00 -12:00	Date:	November 06, 2025	
Paper ID	Paper title		Authors	
1. 130	Machine Learning-Based Prediction of		1. Badar Ibrahim Al Broomi	
	Lettuce Growth Utilising Onlin	ne	2. Shamsul Masum	
	Environmental Datasets		3. David Ndzi	
			4. Victor Becerra	
			5. Mohammed Ahmed	
			Raisuadduin	
			6. Amur Al Yahmedi	
2. 248	A Comparative Study of Senti	mental	1. Sayera Nasrin	
	Analysis Using Three Machine	Learning	2. Renad Ibrahim	
	Techniques		3. Baraa T Sharef	
			4. Rabé Anderson	
3. 166	Image Data Protection Using a	Novel 2D-	1. Sivaranjani Devi C	
	HIM and DNA Based Encryptic	on	2. Vanisree K	
			3. Udhaya K J	
			4. Padmapriya Velupillai	
			Meikandan	
4. 254	Enhancing Bank Loan Approva	al System	1. Said Mahad Ba Awain	
	Using Various Machine Learni	ng Models	2. Ali Abdul Razak Al Alawi	

Main Track	Sustainable Engineering and Energy Solutions		
Sub- Track	Nanotechnology for Sustainability and Environmental Engineering		
Session No.	ICSETS 3.5.2 Venue:		S3 (TB3-B2 R2)
Time:	11:00 -12:00 Date:		November 06, 2025
		•	•
Paper ID	Paper title		Authors
1. 259	Enhanced Rainfall Prediction Accuracy		1. Meaghaa S
	using Hybrid GRU with Harris	Hawks	2. Kanishkar Karupppusami
	Optimization Approach		3. Meena V
			4. SenthilKumar J
			5. Gowri Lakshmanan
2. 95	The Environmental Impact of	Artificial	1. Konark Jetly
	Intelligence: Problems Possibilities and		2. Mohannad Saif Al Maqbali
	Solutions		
			3. Mohammed Nasser Said Al Fuliti
3. 205	Automated Dam Crack Detect	ion Using	1. Kannan A
	YOLOv10 and UAV Imagery fo	r Structural	2. Arun Rajesh Sivaraman
	Health Monitoring		3. Girija Narasimhan
			4. Maheswari Subburaj
			5. Arun Kumar Sivaraman
			6. Kamalavelu Velayutham

Main Track	Advancing Digital Transformation and Modern Simulation		
Sub- Track	Cybersecurity computational and mathematics, Data Privacy analysis		
Session No.	ICSETS 4.3.2	S4 (TB3-B2 R3)	
Time:	11:00 -12:00	Date:	November 06, 2025
Paper ID	Paper title		Authors
1. 165	Detection Of Cyber Attacks In Heat		1. Rohini R
	Exchanging Process		2. Venkatesh Sivanandam
			3. Madhavan BadriNarayanan
2. 167	Multi-map Chaotic Image Encryption and		1. VAISHNAVI R
	Decryption with Bit-Level Shuffling		2. Poorna Durga Naveen
			Chand
			3. Santhosh D
			4. Rahul Narayanan S
3. 227	Zero Trust Authentication Sec	urity	1. Samat Mukhanov
	framework for the assessmen	t of access	2. Nikita Shulmin
	control systems based on policies and		3. Nurzhan Saktaganov
	context		4. Saule Amanzholova
			5. Dauren Sagidullauly
			6. Askhat Zhetkerbay

Main Track	Advancing Digital Transformation and Modern Simulation		
Sub- Track	Digital Transformation in Education, such as Engineering Education,		
	Competencies for Future Graduates, Adaptation to the Future Job Market,		
	Virtual Reality (VR), Soft Labs, and Advanced Simulation Environments		
Session No.	ICSETS 4.4.2 Venue:		S5 (TB3-B2 R4)
Time:	11:00 -12:00	Date:	November 06, 2025
Paper ID	Paper title		Authors
1. 196	From Chalkboard to GeoGebra:	Engaging	1. Edgar Adina
	Students in Calculus through Int	teractive	2. Cesar Romeo Delos Reyes
	Visualization		
			3. Dan Andrew Magcuyao
			4. James Lenard Yu
			5. Reginald Verdida
2. 197	Designing Instruction for Flexibi	ility: How	1. Edgar Adina
	HyFlex Supports Student Succes	ss in	2. Cesar Romeo Delos Reyes
	Outcome-Based Courses		
			3. Dan Andrew Magcuya
			4. James Lenard Yu
			5. Reginald Verdida
3. 202	Leveraging Digital Technologies	for	1. KAPIL GUPTA
	Sustainable Engineering Educati	ion: A	2. Shailendra Pawanr
	Case of An International Univer		3. Mfundo Nkosi
4. 222	ANALYZING FOOD DEMAND SUI	PPLY	1. Puvvadi Charan Kumar
	CHAINS WITH TIME SERIES AND)	2. Paluvai Bhargav Saket
	REGRESSOR FORECASTING MOD	DELS	3. Aashiq Shaik
			4. SenthilKumar J
			5. Meena V